New 24-Isopropylcholesterol and 24-I sopropenylcholesterol Sulfate from the Marine Sponge Epipolasis Species

Akemi Umeyama,* Kanako Adachi, Seiichi Ito, and Shigenobu Arihara
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, J apan

Received J anuary 19, 2000

Abstract

Two novel steroids, polasterol A (1) and polasterol B sulfate (2), along with two known compounds, 22(E),24-isopropylcholesta-5,22-dien-3 β-ol (3) and halistanol sulfate (4), have been isolated from theJ apanese marine sponge Epipolasis sp. The structures of $\mathbf{1}$ and $\mathbf{2}$ were determined as 3β-hydroxy- 24 -isopropyl-cholesta-5,22(E)-dien-7-one and 24ξ-isopropenylchol esta-22(Z),28(29)-diene- $2 \beta, 3 \alpha, 6 \alpha$-triyl trisodium sulfate on the basis of spectroscopic investigations and a chemical conversion.

Marine sponges continue to be a rich source of unique steroids with unusual side chains and nuclei. ${ }^{1,2}$ Steroids with an additional isopropyl group at C-24 are relatively rare and were first reported in 1979 from sponges, a Pseudaxinyssa sp. ${ }^{3}$ and a Verongia cauliformis. ${ }^{4}$ Recently, I shibashi et al. reported topsentinols A-J from the marine sponge Topsentia sp. ${ }^{5}$ As part of an ongoing investigation of metabolites isolated from marine organisms, it was found that extracts of the sponge Epipolasis sp. contained two new steroids with an additional isopropyl or isopropenyl group at C-24, polasterol A (1) and polasterol B sulfate (2), along with two known compounds, 22(E),24-isopropyl-cholesta-5,22-dien-3 β-ol (3) ${ }^{3,4}$, and halistanol sulfate (4). ${ }^{6}$ We now describe the isolation and structure elucidation of polasterol $A(\mathbf{1})$ and polasterol B sulfate (2).
The sponge Epipolasis sp. was extracted with MeOH and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1). The combined extract was divided into EtOAc-, n-BuOH-, and $\mathrm{H}_{2} \mathrm{O}$-soluble portions. The EtOAcand $\mathrm{n}-\mathrm{BuOH}$-soluble portions were chromatographed on Sephadex LH-20 and Si gel columns, respectively. Final purification by reversed-phaseHPLC afforded $\mathbf{1}$ and $\mathbf{3}$ from the EtOAc-soluble portion and $\mathbf{2}$ and $\mathbf{4}$ from the n-BuOHsoluble portion.

Polasterol A (1) was obtained as an amorphous powder. The molecular formula of $\mathbf{1}$ was established as $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}$ on the basis of HREIMS and corresponds to seven degrees of unsaturation. The IR spectrum contained bands at 3395 cm^{-1} (hydroxyl group) and $1680 \mathrm{~cm}^{-1}$ (α, β-unsaturated ketone), and the UV absorption at 238 nm ($\log \epsilon$ 3.87) confirmed the presence of the α, β-unsaturated ketone. The ${ }^{1} \mathrm{H}$ NMR spectrum contained a signal at $\delta 5.69(\mathrm{~d}, \mathrm{~J}=2.2$ Hz), which is appropriate for an α-proton on an α, β unsaturated ketone, and two methyl singlets at $\delta 0.70$ and 1.20 ; five methyl doublets at $\delta 0.77(\mathrm{~J}=6.9 \mathrm{~Hz}), 0.78(\mathrm{~J}=$ $6.9 \mathrm{~Hz}), 0.84(\mathrm{~J}=6.9 \mathrm{~Hz}), 0.85(\mathrm{~J}=6.9 \mathrm{~Hz})$, and $1.04(\mathrm{~J}=$ 6.9 Hz); and one oxygenated methine proton at $\delta 3.68$ (dddd, J $=11.3,11.3,4.4,4.4 \mathrm{~Hz}$). A DEPT experiment indicated seven methyl, seven methylene, 12 methine, and four quaternary carbons. The ${ }^{13} \mathrm{C}$ NMR spectrum indicated the presence of a disubstituted double bond at $\delta 139.1$ (d) and 127.2 (d), a trisubstituted double bond at $\delta 165.1$ (s) and 126.1 (d), a carbonyl group at δ at 202.2 (s), and a carbon bearing a hydroxy group at $\delta 70.5$ (d). This indicated that $\mathbf{1}$ had an additional isopropyl group on a usual steroidal structure. An HMQC experiment established the $\mathrm{C}-\mathrm{H}$ connectivities, and HMBC and COSY experiments

[^0]were used to determine the $\mathrm{C}-\mathrm{C}$ connectivities. The COSY spectrum clearly showed cross-peaks (H-24/H-25, H-24/H28, H-25/H-26, H-25/H-27, H-28/H-29, H-28/H-30) that indicated the presence of a 24-isopropyl group (Experimental Section). The HMBC spectrum showed that the H-3 methine proton was coupled to $\mathrm{C}-1$ and $\mathrm{C}-5$, the $\mathrm{H}-4$ methylene protons to $\mathrm{C}-6$, and the $\mathrm{H}-9$ methine proton to the α, β-unsaturated carbonyl C-7 (Experimental Section). Thus, the planar structure of $\mathbf{1}$ was determined.

The relative stereochemistry of $\mathbf{1}$ was established by NOESY experiments and coupling constants. The NOE between $\mathrm{H}-18 / \mathrm{H}-8,-15$, and -20 and between $\mathrm{H}-19 / \mathrm{H}-2 \beta$, $-4 \beta,-8$, and -11β suggested a common sterol nucleus. The β-OH group at C-3 could be assigned from the observed coupling constants for $\mathrm{H}-3(\mathrm{~J}=11.3,11.3,4.4,4.4 \mathrm{~Hz})$. The 17β-orientation of the side chain was disclosed by NOE SY cross-peaks $\mathrm{H}-12 / \mathrm{H}-21$ and $\mathrm{H}-18 / \mathrm{H}-20$. The geometry of the Δ^{22}-double bond was deduced to be E from the coupling constant ($J=15.4 \mathrm{~Hz}$). The CD spectrum [$\Delta \epsilon-5.64$ (237 nm)] of 1 showed a negative Cotton effect, ensuring the absolute stereochemistry of a sterol nudeus. ${ }^{7}$ Finally, polasterol A (1) can be designated as 3β-hydroxy-24-isopropylcholesta-5,22(E)-dien-7-one.

Polasterol B sulfate (2) was isolated as a white powder, and the molecular formula $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{Na}_{3} \mathrm{O}_{12} \mathrm{~S}_{3}$ was determined by HREIMS ($\mathrm{m} / \mathrm{z} 404.3434$; $\mathrm{M}-3 \mathrm{NaHSO}_{4}$) and negative FABMS (m/z $741[\mathrm{M}-\mathrm{Na}]^{-}$and $\left.455\left[\mathrm{M}-3 \mathrm{SO}_{3} \mathrm{Na}\right]^{-}\right)$. The IR spectrum suggested that $\mathbf{2}$ possessed sulfate groups at 1220 and $1250 \mathrm{~cm}^{-1}$. The ${ }^{13} \mathrm{C}$ NMR spectrum indicated the presence of two double bonds at $\delta 111.4$ (t), 129.7 (d), 138.6 (d), and 149.4 (s) and three oxygenated carbons at $\delta 75.5$ (d) $\times 2$ and 78.7 (d). The ${ }^{1} \mathrm{H}$ NMR spectrum contained three methyl singlets at $\delta 0.73,1.04$, and 1.63 ; three methyl doublets at $\delta 0.83(\mathrm{~J}=6.9 \mathrm{~Hz}), 0.86(\mathrm{~J}=6.9 \mathrm{~Hz})$, and 0.90 $(J=6.6 \mathrm{~Hz}$); three oxymethine protons at $\delta 4.18$ (ddd, $\mathrm{J}=$ 11.0, 11.0, 4.4 Hz), 4.74 (ddd, J $=2.5,2.5,2.5 \mathrm{~Hz}$), and 4.79 (br s); a terminal methylene proton at $\delta 4.66$ (s) and 4.67 (s), and olefinic protons at $\delta 5.20(2 \mathrm{H}, \mathrm{m})$. The steroidal feature of $\mathbf{2}$ was inferred from COSY, HMQC, and HMBC data (Experimental Section). Oxygenation at C-2, C-3, and $\mathrm{C}-6$ in ring A was straightforward by interpretation of 2D NMR data. The $\mathrm{H}-2$ methine resonance at $\delta 4.79$ and the H-3 methine resonance at $\delta 4.74$ showed HMQC correlations to the same methine carbon resonance at $\delta 75.5$. Three sulfate groups could be accommodated on C-2, C-3, and C-6 as judged by the lowfield resonance of $\mathrm{H}-2, \mathrm{H}-3$, and H-6. The relative stereochemistry of $\mathbf{2}$ was deduced by NOESY experiments and coupling constants. All trans

Table 1. ${ }^{1} \mathrm{H}$ NMR Data for $\mathbf{1}, \mathbf{2}$, and 5

C no.	1 (in CDCl_{3})	2 (in $\mathrm{CD}_{3} \mathrm{OD}$)	5 (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$
	δ_{H} mult, J (Hz)	δ_{H} mult, J (Hz)	δ_{H} mult, J (Hz)
1	1.93 m	2.07 br d, 14.6	2.15 dd, 13.7, 1.9
	1.19 m	1.43 dd, 14.3, 3.3	2.00 dd, 13.7, 3.6
2	1.94 m	4.79 br s	4.57 br s
	1.60 m		
3	3.68 dddd, 11.3, 11.3, 4.4, 4.4	4.74 ddd, 2.5, 2.5, 2.5	4.60 br d, 2.5
4	2.51 ddd, 14.0, 4.4, 2.5	2.26 br d, 14.8	2.88 br d, 13.5
	2.40 ddd, 14.0, 11.3, 2.2	1.78 ddd, 14.8, 11.0, 2.7	2.40 ddd, 12.9, 12.9, 2.5
5		1.62 ddd, 13.5, 11.0, 2.7	2.32 m
6	5.69 d, 2.2	4.18 ddd, 11.0, 11.0, 4.4	3.90 ddd, 10.4, 10.4, 4.1
7		2.34 ddd, 12.1, 4.4, 4.4	2.34 m
		1.02 m	1.34 m
8	2.25 dd, 12.6, 11.0	1.52 m	1.62 m
9	1.50 m	0.75 m	0.93 m
11	1.57 m	1.54 m	1.68 m
		1.32 ddd, 13.1, 13.1, 3.5	1.40 m
12	2.01 ddd, 12.9, 3.6, 3.6	1.98 ddd, 12.5, 3.5, 3.5	1.95 ddd, 12.4, 3.3, 3.3
	1.13 m	1.16 m	1.12 m
14	1.33 m	1.10 m	1.08 m
15	2.38 m	1.58 m	1.64 m
	1.24 m	1.10 m	1.15 m
16	1.76 m	1.71 m	1.77 m
	1.27 m	1.22 m	1.34 m
17	1.13 m	1.18 m	1.17 m
18	0.70 s	0.73 s	0.79 s
19	1.20 s	1.04 s	1.47 s
20	2.07 m	2.51 m	2.64 m
21	1.04 d, 6.9	0.90 d, 6.6	1.05 d, 6.6
22	5.14 dd, 15.4, 8.8	5.20 m	5.34 dd, 10.7, 10.7
23	$5.03 \mathrm{dd}, 15.4,9.9$	5.20 m	5.27 dd, 10.7, 10.7
24	1.32 m	2.67 dd, 8.5, 8.5	2.83 dd, 9.3, 9.3
25	1.67 m	1.66 m	1.66 m
26	0.78 d, 6.9	0.83 d, 6.9	0.93 d, 6.6
27	0.85 d, 6.9	0.86 d, 6.9	0.86 d, 6.9
28	1.67 m		
29	0.84 d, 2.5	4.67 s	$4.86 \mathrm{~d}, 2.5$
		4.66 s	4.80 dd, 2.5, 1.6
30	0.77 d, 6.9	1.63 s	1.67 s

junctions from A to D rings were confirmed by NOESY cross-peaks (H-1 $\alpha / \mathrm{H}-5, \mathrm{H}-1 \alpha / \mathrm{H}-9, \mathrm{H}-4 \beta / \mathrm{H}-19, \mathrm{H}-5 / \mathrm{H}-7 \alpha$, $\mathrm{H}-5 / \mathrm{H}-9, \mathrm{H}-6 / \mathrm{H}-19, \mathrm{H}-7 \alpha / \mathrm{H}-9, \mathrm{H}-8 / \mathrm{H}-18, \mathrm{H}-9 / \mathrm{H}-14, \mathrm{H}-11 \beta /$ $\mathrm{H}-18, \mathrm{H}-15 \beta / \mathrm{H}-18, \mathrm{H}-16 \beta / \mathrm{H}-18)$. These $2 \alpha-3 \beta$-, and $6 \beta-$ sulfate groups on rings A and B could be assigned from the observed coupling patterns for $\mathrm{H}-2$ at $\delta 4.79$ (br s), $\mathrm{H}-3$ at $\delta 4.74$ (ddd, J $=2.5,2.5,2.5 \mathrm{~Hz}$), and $\mathrm{H}-6$ at $\delta 4.18$ (ddd, $\mathrm{J}=11.0,11.0,4.4 \mathrm{~Hz}$), respectively. The 17β-orientation of the side chain was disclosed by NOESY cross-peaks $\mathrm{H}-12 \beta / \mathrm{H}-21$ and $\mathrm{H}-18 / \mathrm{H}-20$.

Upon treatment of $\mathbf{2}$ with dioxane and pyridine, $\mathbf{5}$ was obtained. The alcohol $\mathbf{5}$ was fully characterized by spectral data (COSY, HMQC, HMBC), and complete NMR assignments are reported in Tables 1 and 2. Although the coupling pattern for $\mathrm{H}-22$ and $\mathrm{H}-23$ in 2 could not be unambiguously interpreted, its Z geometry in 5 was established by the coupling constant ($J=10.7 \mathrm{~Hz}$). Furthermore, the Z geometry of the Δ^{22}-double bond for $\mathbf{2}$ was implied by ${ }^{13} \mathrm{C}$ NMR signal $\delta 20.6$ at $\mathrm{C}-21$ ($\delta 20.5$ in $\mathbf{5}$; $\delta 21.4$ in $\mathbf{1}$ [E geometry]). ${ }^{6}$ Thus, the structure of polasterol B sulfate (2) was concluded to be 24ξ-isopropenylcholesta-22(Z),28(29)-diene2 $2 \beta, 3 \alpha, 6 \alpha$-triyl trisodium sulfate.

Experimental Section

General Experimental Procedures. The following instruments were used: a J ASCO FT/IR-5300 (IR), a J ASCO DIP-360 polarimeter (optical rotation), a J ASCO J-500 (CD), a JEOL JMS-HX-100 mass spectrometer (HRMS), and a Varian UNITY 600 NMR spectrometer (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR).

Animal Material. The marine sponge Epipolasis sp. (1.3 kg , wet wt) was collected off the coast of Tokushima prefecture

[($\left.134^{\circ} 30^{\prime} \mathrm{E}, 33^{\circ} 35^{\prime} \mathrm{N}\right)$ by netting at a depth between 10 and 70 m] and was kept frozen $\left(-20^{\circ} \mathrm{C}\right)$ until used; it was identified by Professor P. R. Bergquist of Auckland University. The voucher sample (TS8103) of the organism under consideration is deposited in the Herbarium of the Department of Pharmacognosy, Tokushima Bunri University. The sponge is a large curving lamellate, 2-2.5 cm thick, 10 cm high, with a broad attachment base; color in life, pale brown. Oscular and poral faces are differentiated. The deeper part of the skeleton is a confused mass of oxeas of two size categories, while the superficial skeleton is a palisade of vertical or obliquely disposed small oxeas. Spicules were $250-400 \mu \mathrm{~m}$ Iong $\times 8-10$ $\mu \mathrm{m}$ thick and $600-750 \mu \mathrm{~m}$ long $\times 12-18 \mu \mathrm{~m}$ thick. Thetexture of the sponge is rock hard.

Table 2. ${ }^{13} \mathrm{C}$ NMR Data for $\mathbf{1}, \mathbf{2}$, and $\mathbf{5}$

C no.	1 (in CDCl_{3})	2 (in CD ${ }_{3} \mathrm{OD}$)	5 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)
1	36.3 (t)	39.2 (t)	41.3 (t)
2	31.2 (t)	75.5 (d)	71.6 (d)
3	70.5 (d)	75.5 (d)	70.9 (d)
4	41.8 (t)	25.1 (t)	26.9 (t)
5	165.1 (s)	45.3 (d)	47.1 (d)
6	126.1 (d)	78.7 (d)	68.8 (d)
7	202.2 (s)	40.0 (t)	43.0 (t)
8	45.4 (d)	35.1 (d)	34.3 (d)
9	49.9 (d)	55.9 (d)	55.4 (d)
10	38.3 (s)	37.6 (s)	37.3 (s)
11	21.2 (t)	21.8 (t)	21.3 (t)
12	38.6 (t)	41.0 (t)	40.3 (t)
13	43.0 (s)	43.7 (s)	42.8 (s)
14	50.0 (d)	57.6 (d)	56.7 (d)
15	26.4 (t)	25.1 (t)	24.6 (t)
16	29.2 (t)	29.3 (t)	28.6 (t)
17	54.7 (d)	57.8 (d)	56.8 (d)
18	12.2 (q)	12.8 (q)	12.6 (q)
19	17.3 (q)	15.3 (q)	16.1 (q)
20	40.4 (d)	35.7 (d)	35.0 (d)
21	21.4 (q)	20.6 (q)	20.5 (q)
22	139.1 (d)	138.6 (d)	138.0 (d)
23	127.2 (d)	129.7 (d)	128.8 (d)
24	56.1 (d)	54.9 (d)	53.6 (d)
25	28.54 (d)	31.3 (d)	30.4 (d)
26	19.2 (q)	21.2 (q)	20.9 (q)
27	21.7 (q)	21.4 (q)	21.1 (q)
28	28.50 (d)	149.4 (s)	148.5 (s)
29	21.6 (q)	111.4 (t)	111.3 (t)
30	19.0 (q)	19.3 (q)	19.4 (q)

a Multiplicity inferred from a DEPT experiment.
Extraction and Isolation of Metabolites. The frozen sample was exhaustively extracted with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) ($2 \mathrm{~L} \times 4$) at room temperature for 1 day. The extract was concentrated, and the resulting residue was extracted with EtOAc ($500 \mathrm{~mL} \times 3$).

The EtOAc-soluble portion (17.5 g) was repeatedly subjected to Sephadex LH-20 column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and Si gel flash column chromatography (using increasing concentrations of MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) to give $\mathbf{1}$ (0.00067% wet wt) and 3 (0.00633%). The n-BuOH-soluble portion (125.0 g) was repeatedly subjected to Si gel flash column chromatography (using increasing concentrations of $95 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent), followed by reversed-phase HPLC ($27-30 \% \mathrm{MeOH}$) to give 2 (0.00423% wet wt) and 4 (0.06202\%).

Polasterol A (1): white amorphous powder; mp 122-125 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}-73.7^{\circ}\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 238$ (3.87) nm; CD $\Delta \epsilon-5.64(237 \mathrm{~nm})\left(c 3.1 \times 10^{-5} \mathrm{M}\right.$, MeOH); FT-IR (film) $v_{\max } 3395,1680 \mathrm{~cm}^{-1}$; $\operatorname{COSY}(\mathrm{H} / \mathrm{H}) 1 / 2,2 / 3,3 / 4$, 4/6 (4 J), 8/9, 8/14, 9/11, 11/12, 14/15, 15/16, 16/17, 17/20, 20/ $21,20 / 22,22 / 23,23 / 24,24 / 25,24 / 28,25 / 26,25 / 27,28 / 29,28 /$ $30 ;$ HMBC (H/C) 1/2, 1/3, 1/5, 1/19, 2/1, 2/3, 2/4, 2/10, 4/2, 4/3, 4/5, 4/6, 4/10, 6/4, 6/8, 6/10, 8/7, 8/9, 8/10, 8/14, 8/15, 9/1, 9/7, $9 / 8,9 / 10,9 / 11,9 / 19,11 / 8,11 / 9,11 / 12,11 / 13,12 / 11,12 / 13,12 /$ $14,12 / 18,14 / 8,14 / 13,14 / 15,14 / 18,15 / 13,15 / 16,15 / 17,16 / 13$, $16 / 17,17 / 16,17 / 20,18 / 12,18 / 13,18 / 14,18 / 17,19 / 1,19 / 5,19 /$ 9, 19/10, 20/16, 20/17, 21/17, 21/20, 21/22, 22/17, 22/20, 22/21, 22/23, 22/24, 23/20, 23/22, 23/24, 23/25, 23/28, 24/22, 24/23, 24/26, 24/27, 24/29, 24/30, 26/24, 26/25, 26/27, 27/24, 27/25,

27/26, 29/24, 29/28, 29/30, 30/24, 30/28, 30/29; EIMS m/z 440 [M]+ (37), 397 (100), 287 (50); HREIMS m/z 440.3650 (calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}, 440.3655\right)$.

Polasterol B sulfate (2): white amorphous powder; mp $185-187{ }^{\circ} \mathrm{C} ;[\alpha]^{21}{ }_{\mathrm{D}}+12.8^{\circ}$ (c 2.73, MeOH); FT-IR (film) $v_{\text {max }}$ 1220, 1250 (sh) cm^{-1}; $\operatorname{COSY}(\mathrm{H} / \mathrm{H}) 1 / 2,2 / 3,3 / 4,4 / 5,5 / 6,6 / 7$, 7/8, 8/9, 8/14, 9/11, 11/12, 14/15, 15/16, 16/17, 17/20, 20/21, 20/ 22, 23/24, 24/25, 25/26, 25/27, 29/30 (${ }^{4} \mathrm{~J}$); HMBC (H/C) 1/5, 1/10, 1/19, 2/3, 2/4, 2/10, 3/1, 3/2, 3/5, 4/3, 4/5, 4/6, 4/10, 6/4, 6/5, 6/10, 7/5, 7/6, 7/8, 7/9, 8/7, 8/9, 8/10, 8/14, 8/15, 9/1, 9/7, 9/8, $9 / 10,9 / 11,9 / 19,11 / 8,11 / 9,11 / 12,11 / 13,12 / 11,12 / 13,12 / 14$, $12 / 18,14 / 8,14 / 13,14 / 15,14 / 18,15 / 13,15 / 16,15 / 17,16 / 13,16 /$ $17,17 / 16,17 / 20,17 / 22,18 / 12,18 / 13,18 / 14,18 / 17,19 / 1,19 / 5$, 19/9, 19/10, 20/16, 20/17, 20/21, 20/22, 20/23, 21/17, 21/20, 21/ 22, 22/17, 22/21, 22/24, 23/25, 23/28, 24/25, 24/26, 24/27, 24/ $28,24 / 29,24 / 30,26 / 24,26 / 25,26 / 27,27 / 24,27 / 25,27 / 26,29 /$ 24, 29/28, 29/30, 30/24, 30/28, 30/29; EIMS m/z 404 (67), 392 (34), 380 (56), 361 (34), 253 (33); negative FABMS m/z 741 [M - Na] ${ }^{-} 455\left[\mathrm{M}-3 \mathrm{SO}_{3} \mathrm{Na}^{-}\right.$, 403; HREIMS m/z [M $\left.3 \mathrm{NaHSO}_{4}\right]^{+} 404.3434$ (cal cd for $\mathrm{C}_{30} \mathrm{H}_{44}, 404.3443$).

Polasterol B (5): white amorphous powder; mp 138-141 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21_{\mathrm{D}}}-5.82^{\circ}$ (c $0.52, \mathrm{MeOH}$); FT-IR (film) $\nu_{\max } 3330 \mathrm{~cm}^{-1}$; $\operatorname{COSY}(H / H) 1 / 2,2 / 3,3 / 4,4 / 5,5 / 6,6 / 7,7 / 8,8 / 9,8 / 14,9 / 11,11 /$ 12, 14/15, 15/16, 16/17, 17/20, 20/21, 20/22, 22/23, 23/24, $24 /$ 25, 25/26, 25/27, 29/30 (4) ; HMBC (H/C) $1 / 5,1 / 10,1 / 19,2 / 3$, $2 / 4,2 / 10,3 / 1,3 / 2,3 / 5,4 / 3,4 / 5,4 / 6,4 / 10,6 / 4,6 / 5,6 / 10,7 / 5$, $7 / 6,7 / 8,7 / 9,8 / 7,8 / 9,8 / 10,8 / 14,8 / 15,9 / 1,9 / 7,9 / 8,9 / 10,9 / 11$, $9 / 19,11 / 8,11 / 9,11 / 12,11 / 13,12 / 11,12 / 13,12 / 14,12 / 18,14 / 8$, $14 / 13,14 / 15,14 / 18,15 / 13,15 / 16,15 / 17,16 / 13,16 / 17,17 / 16$, $17 / 20,17 / 22,18 / 12,18 / 13,18 / 14,18 / 17,19 / 1,19 / 5,19 / 9,19 /$ $10,20 / 16,20 / 17,20 / 21,20 / 22,20 / 23,21 / 17,21 / 20,21 / 22,22 /$ 17, 22/20, 22/21, 22/24, 23/20, 23/24, 23/25, 23/28, 24/25, 24/ 26, 24/27, 24/28, 24/29, 24/30, 26/24, 26/25, 26/27, 27/24, 27/ 25, 27/26, 29/24, 29/28, 29/30, 30/24, 30/28, 30/29; positive FABMS m/z $[\mathrm{M}+\mathrm{Na}]^{+} 481.3630\left(\right.$ calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na}$ 481.3657); EIMS m/z 426 (10), 408 (100), 365 (53); HREIMS $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{O}_{2}\right]^{+} 426.3893$ (cal cd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}, 426.3882$).

Solvolysis of 2: A solution of compound $2(12 \mathrm{mg})$ in dioxane (1.5 mL) and pyridine (1.5 mL) was heated at 120° for 2 h in a stoppered reaction vial. The residue was purified by HPLC (reversed-phase C_{18}) to give the desulfated compound 5 (4 mg).

Acknowledgment. We are grateful to Professor P. R. Bergquist, Auckland University, for her kind identification and the taxonomic description of the sponge. We thank Mr. K. Murakami and Mr. F. I wasaki for help with collections. We are indebted to Dr. M. Tanaka for measurements of NMR spectra and Ms. I. Okamoto for measurements of mass spectra.

References and Notes

(1) Giner, J .-L. Chem. Rev. 1993, 93, 1735-1752.
(2) D'Auria, M. V.; Minale, L.; Riccio, R. Chem. Rev. 1993, 93, 18391896.
(3) Hofheinz, W.; Oesterhelt, G. Helv. Chim. Acta 1979, 62, 1307-1309.
(4) Kokke, W. C. M. C.; Pak, C. S.; Fenical, W.; Djerassi, C. Helv. Chim. Acta 1979, 62, 1310-1318.
(5) Ishibashi, M.; Yamagishi, E.; K obayashi, J . Chem. Pharm. Bull. 1997, 45, 1435-1438.
(6) Fusetani, N.; Matsunaga, S.; K onosu, S. Tetrahedron Lett. 1981, 22, 1985-1988.
(7) Koreeda, M.; Harada, N.; Nakanishi, K. J. Am. Chem. Soc. 1974, 96, 266-268.
NP000024J

[^0]: * To whom correspondence should be addressed. Tel.: 0886-22-9611. Fax: 0886-55-3051. E-mail: umeyama@ph.bunri-u.ac.jp.

